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A SIMPLE TEST FOR GOODNESS-OF-FIT BASED
ON SPACINGS WITH SOME EFFICIENCY
COMPARISONS

by
M. L. PURI (1) %, J. S. RAO (2), AND YOUNGJOO YOON (3)

1. Introduction

Let Xq, .oy Xy—1 be independently and identically distributed random variables
with a common distribution (d.f.). The goodness-of-fit problem is to test if this d.f.
is equal to a specified one. A simple probability integral transformation on the
random variables (r.v.’s) would permit us to equate the specified d.f. to the uniform
distribution on [0, 1]. Thus from now on, we shall assume that this reduction has
been effected and under the hypothesis, the observations have a uniform distribution
on [0, 1]. The original problem thus is equivalent to one of testing for uniformity
viz. whether a given random sample of observations come from a uniform distribu-
tion on [0, 1].

Let X, £ X, <...=X,_ be the order statistics. The sample spacings
(T, ..., T,) are defined by

7 = M= Mo, [ 2 Uit

where we put X, = 0, X = 1. Tests for goodness-of-fit (or equivalently uniformity)
based on spacings have been proposed by several authors. See for instance Pyke
(1965) or Rao and Sethuraman (lfﬁi') and the references contained therein. It can
be seen (see e.g. Pyke (1965) Section 2.1) that the distribution of (Ty, ..., T,) under
the hypothesis of uniformity is Dirichlet D(1,1... 4 1) distribution with any subset
(T, ..., T,) of them having D(L, ..., 151 — k) distribution. See Wilks (1962) pp-
177 —182 for an elementary discussion on Dirichlet distributions.

In analysing circularly distributed data, testing for uniformity i.e. deciding
whether a given set of observations on the circumference of a unit circle indicate
a preferred direction, is a very basic problem. This is a necessary preliminary step
before estimating or making inferences on the mean direction. Also the goodness-

* Work supported by the Air Force Office of Scientific Research, AFSC, USAF, under Grant
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of-fit problem on the circle is equivalent to this just as on the line. In the circular

case, the spacings may be defined as the arc-lengths between successive observations

on the circumference, ignoring the zero-direction. Apart from the minor difference |
that n observations on the circle lead to n circular spacings while on the line (n — 1)
observations make n spacings, the distribution of the spacings in either case is the
same (see for instance Rao (1969) pp. 63—67 or Mardia (1972) p. 172). For purposes
of inference on the circle, one requires a statistic that is invariant under changes of
the origin and a general invariant statistic is of the form h(Ty, Ty, ..., T,) where h(*)
is a function that remains invariant under cyclical permutations of the arguments.
For instance functions symmetric in all the arguments may be considered though
they are not asymptotically efficient. See Sethuraman and Rao (1970). Thus the
spacings {T}} play a crucial role in testing goodness-of-fit on the circle whereas for
the linear case, one has tests that are not necessarily based on spacings. Therefore
all our further discussion on spacings can be related also to the circular case and is I
indeed more important in that context.

In Section 2, we propose a simple class of test R, = R,,(né,,) based on spacings
and obtain the exact distribution under the hypothesis of uniformity. Section 3
deals with the asymptotic distribution of R, while sections 4 and 5 respectively discuss
the Asymptotic Relative Efficiency (ARE) and Bahadur Efficiency (BE) of R, relative
to U,, another spacings test discussed by Rao (1969). Since the limiting efficiencies of
a number of test-statistics including U, have already been investigated by Sethurma-
man and Rao (1970) and Rao (1972), the results of sections 4 and 5 provide a basis
for comparing R, with any of those tests. Finally in Section 6 we discuss the statistic
Ry, which has the maximum limiting efficiency in the class of tests R,(nd,). We also
provide a table that can be used to obtain critical values of R} and illustrate, by
means of a numerical example, how simple it is to use this R} — test.

2. The statistic R, and its exact null distribution

Choose and fix a d, > 0. We shall call a sample spacing ‘small’ if it is less than 6,
in length. The test criterion is to reject H,, the hypothesis of uniformity when we
observe too many ‘small’ spacings, since this clearly indicates clustering of the
observations. At this stage we will leave open the choice of J, though a suitable value
might be to take for instance 6, = 1/n, the expected length of any spacing under
uniformity. Since T’s are of order (1/n) under H,, we consider the so-called “nor-
malized” spacings {nT;} and define

R, = R,(nd,) = {number of (nT;)’s < nd,},

= number of spacings T; smaller than §, ,

and reject H, if R, is too large. The exact distribution of R, is given by the following.
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Theorem 2.1. Under the hypothesis of uniformity, the probability function of R,
is given by

(2.1) P(R, = k) = <z> é:o(_gf <i‘> (= (n=k+j)smt

for k=0,1,..,n—-1,
=0 otherwise
with the notation {(x) = x if x >0 and =0if x £ 0.

Proof:

Let E; denote the event that i*™ spacing T; exceeds 6,, i = 1, ..., n and let P,, denote
the probability that a specified set of m arcs exceed d,. Clearly we have to have
m < [1)5,], the largest integer contained in 1/3,. Since the spacings are exchangeable,

P,=PE,n..nE;)
=PE, n...NnE,)

= P(T, > 6,y e0y Tpy > 3,)

m=2 =

1 o _}:"tg 1—")=:,t(
=J J j glty, ooy ty) dty, ..o, diy
On dn dn

(1 —ms)y'~t for 0<mg= |:i:|

d,

0 otherwise

=1 — méyt

with the notation { > used in (2.1). Now if S,, denotes the probability that any sub-
set m of these n events take place, then because of exchangeability,

(2.2) S, = <"> Pm

m

= <"> A —msyt,
m

Further if I1,, denotes the probability that exactly m of these n events take place,
then we have (see e.g. Feller I, p. 106)
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which on substituting (2.2) gives

=Sy () (1) <o
j=m J/ \m

= (;) PG (’;:’;‘) (1 - joyt

using again the notation < ) of (2.1). Finally since R, = k if and only if exactly
(n — k) of the spacings exceed J, (hence exactly k arcs are smaller than 5,), we have

PR, = k) = II,_,

(), E e, -
= (") Z (-1 (f) A =(n =k +j)op""

Q. E. D.
Remark 1

The distribution in (2.1) can also be derived by using the results of Darling (1953)
who gives the characteristic function of N,(e, ), the number of spacings with values
between « and f. It is given by

- (n _ 1)| c+ i )
E(e®M*P) = — -~ efz7"{1 + (¢¥ — 1) (e™™ — e™*#)}"dz.
2mi c—ioo

Since our R, = N,(0, 6,), the characteristic function of R, is obtained by letting
o =0and g =4, ie.

. _ | fetio )
S A BT IR
¥[9)

c—iw

If we expand the factor in braces and select the coefficient of e’** for any fixed
k=0,1,...,mn,

. | fetico
PR, = k) = (n2 1)J ez " {e TP — 7)) dz
i

clim

- (" i k (_1)1("‘1)! I ==k o) -n g
k) i=o\j 2mi ;

c— 1

The last equality follows from the Residue Theorem.
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Remark 2

n
Another spacings statistic of interest is U, = %Y. |T; — 1/n| discussed in detail by
=1

Rao (1969) in connection with testing uniformity of circular distributions. Its density
function was investigated by Darling (1953), Sherman (1950) and Rao (1969). We
show below that this statistic U, is closely related to R,,(l) with 6, = 1/n. Let K =
= n — R,(1) denote the (random) number of spacings with lengths larger than 1/n
and

Sk = Tyogr1y T Tuekry + oo + Tty = Trpenysr + oo + Tiny

where Tyy < ... £ T, are the ordered spacings. Thus Sk denotes the sum of those K
Jargest spacings which exceed 1/n in length. Notice that

K
= 2 <T, e 1> B SK - .
{i:Ty>1/n) n n

Mauldon (1951) derived the distribution of S, the sum of the k largest spacings for
any fixed k. Treating this as the conditional density of Sk given K = k and using
(2.1), we can write the joint density of (S, K) and hence obtain the density of U,
through the relation (2.3). The resulting expression for the density of U, is very
complex and attempts to show that this is identical to the density given for instance
in Darling (1953), have not been successful.

(23) v, -3y |1 -1

l=1| n

3. Asymptotic null distribution of R,

In this section, we establish the asymptotic normality of R, under the hypothesis of
uniformity as well as under a suitable sequence of alternatives. Notice that for
computing the Pitman Asymptotic Relative Efficiency (ARE) of R,, which will be
considered in the next section, it is enough to obtain the limiting distributions under
a sequence of alternatives which converge to the hypothesis (see for instance Rao
and Sethuraman (1975)). Hence we will specify the alternative hypotheses by a se-
quence of distribution functions A,,(x) depending on n and converging to the uniform
distribution, which corresponds to the null hypothesis. Under the alternative hypo-
thesis, we specify the distribution to be

IA

(3.1) Afx) =x+ L(x)n'*, 0=x=1

where L,(0) = L,(1) = 0. We further assume that L,(x) is twice differentiable on

[0, 1] and there is a function L(x) which is twice continuously differentiable and such

that L(0) = L(1) = 0, n'/* sup |L;(x) — I'(x)| = o(1) where I(x) and I'(x) are the
0=<x=1
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first and second derivatives of L(x). This sequence of alternatives is smooth in
a certain sense and has been considered before. See for instance Rao and Sethura-
man (1975).

We define the empirical distribution function of the “normalized” spacings
{nT, i=1,...,n} by

(3.2) H(x) =Y I(nT; x)[n for xZ0

=1
where
I(z;x)=1 if z<x,

0 otherwise.
Let

(33)  G) = 1 — e~ + o~X(x — x2J2) ( j 12 P() dp> [Jn for x20
and

{6(x) = V() (Hi(x) = G,(x)), x=0}. |

{,(+) can be considered as a stochastic process with values in D[0, co]. See Rao and '
Sethuraman (1975) from which we have the following

Theorem 3.1 (Rao and Sethuraman (1975))

Under the alternatives (3.1), the sequence of stochastic processes (,(x) =
= /(n) (H(x) — G,(x)), x = O} converges weakly to the Gaussian process {{(x),
x = 0} in D[O, oo] with mean function zero and covariance kernel

K(s,ty=e"(1 —e™* —ste™) for 0<s<t=< 0.

Moreover if g(+) is a real-valued measurable function on D[0, co] which is a.e.
continuous with respect to the probability measure induced by the Gaussian process
{{(x), x = 0}, then the distribution of the real-valued random variable g({;) con-
verges weakly to that of g({) as n — oo.

At this stage we will assume that 6, is of the form 6, = 6/n for some & > 0.
Since the individual T;’s are of order 1/n in probability under the hypothesis, for
asymptotic.purposes this would be the correct normalization. When &, = d/n, we
have the following theorem on R, = R,(né,) = R,(9).

Theorem 3.2

Under the sequence of alternatives (3.1), \/(n) (R,(8)/n — G,(8)) where G,(x) is
defined in (3.3), has a limiting N(0, ¢2) distribution witho* = e™%(1 — ¢™% — 8% 7?).
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Proof:
Note R,(8) = number of (nT;) < (nd,) =9

— n 1,0

where H,(x) is the empirical distribution of the normalised spacings and is defined
in (3.2). Thus

) (P42 — 65)) = o) [10) = (o)
= {,(9).

Therefore the stated result follows from Theorem 3.1. g.ed.

Corollary 3.3

Under the null hypothesis of uniformity

) (B2 — (1 = o) fmit — et = e

has a limiting N(0, 1) distribution.

This Corollary 3.3 may also be obtained alternately using Theorem 9.1 of Darling
(1953). But unfortunately the expression for the limiting variance given there, is
incorrect. We now state the correct version without proof. This result may also be
obtained as a corollary from Theorem 3.1 of Rao and Sethuraman (1975).

Theorem 3.4

Denote by N,(afn, b/n) the number of spacings whose length lies between aln
and b[n. Then the random variable N,(a[n, bjn) is asymptotically normally
distributed with an asymptotic mean and a variance given by

ty = n(e™" — %)
o =n[(e” —e7?) —~ (7 — e7%)? — (ae™* — be¥)?].

4. The ARE of R, relative to U,
For a definition of ARE, see Fraser (1957). The ARE of a test relative to another

may be defined as the limit of the inverse ratio of sample sizes required to obtain the
same limiting power at a sequence of alternatives converging to the null hypothesis.
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This limiting power should be a value in between the limiting size « and the
maximum power 1, in order that it can give an insight into the power behaviour of the
test. If this converges to a number in the interval (a, 1), then a measure of the rate
of this convergence, called ‘efficacy’ can be computed. Under certain standard regular-
ity assumptions (see e.g. Fraser (1957)) which include a condition about the nature
of alternatives and the asymptotic normality of the test statistic under the alter-
natives, which are satisfied here, the ‘efficacy’ is given by

(4.1) efficacy = <E>4

o

in this case. Here p and o are the mean and variance of the limiting normal distribu-
tion under the sequence of alternatives (3.1) when the test-statistic has been normalized
to have a limiting normal distribution with mean zero and finite variance under the
hypothesis. In such a situation, the ARE of one test with respect to another is simply
the ratio of their efficacies.

From Corollary 3.3, \/(n) (R,/n — (1 — ¢7%)) has a limiting normal distribution
with mean zero and variance e~%(1 — e™® — 5% ~%) under H,. On the other hand,
from Theorem 3.2; under the sequence of alternatives (3.1) the same statistic has
a limiting normal distribution with mean ({g I>(p) dp) e™%6 — 6%/2) and the same
variance. Hence the efficacy of R,(d) is given by

1 4 52 4
(42) < f (p) dp> (5 - _>
(ea = 52)2 !
Sethuraman and Rao (1970) show that the Pitman efficacy of U, in this situation is

given by
1 4
(fo0)

(e~ 5)"

Hence the ARE of R, with respect to U, is given by

(43) 1602 — 5)? (5 - ?23>4

(e — 1 — &%)

From the results of Rao and Sethuraman (1970) who compute the efficacies of many
other spacings tests, one can compare the ARE of R, with any of those tests. We will
return to the expression (4.2) again in Section 6.
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5. Limiting Bahadur Efficiency of R, relative to U :

We refer the reader to Bahadur (1960) for the concepts of Bahadur Approximate
slope (BAS) and Bahadur Approximate Efficiency (BAE). We use the same notations
as in Bahadur (1960). We consider the class of alternative densities

(5.1) glx)=1+kl(x), 0sx=1

where k is a real number and /(x) is any square integrable function on [0, 1] with
j}) I(x) dx = 0. For instance in connection with the circle, taking l(x) = C0S 21X
yields the so called cardioid curve. Here k is a scale parameter and since uniformity
corresponds to k = 0, the null hypothesis formulates Hy: k = 0. These alternatives
are very similar to those formulated earlier in (3.1). We now take as the standard
sequence

I G ) [ (R AR

Since TS has a Ni (0, 1) distribution asymptotically from Corollary 3.3, this sequence
of test statistics satisfies conditions (1), (2) and (3) on p. 276 of Bahadur (1960)
with @ = 1. To find the probability limit of T{"/\/n, we state a result from Rao
(1969).

Theorem 5.1 (Rao (1969))

Under the alternative distribution G(x) on [0, 1] with continuous density g(*),
the statistic H,(a) defined in (3.2) converges in probability to 1 — [§exp (—a g(u) .
. dG(u).

Thus under the alternative (5.1)

(53) Beom@) I vjawwmwm@w,

n 0

1
=1- e"‘SJ' e (1 + k I(u)) du .

0

As in Rao (1972), the comparison of the limiting efficiencies is made easier by
considering approximations to the slopes when k is small, since in any case we let
k — 0 for obtaining the limiting efficiencies. Thus for k small, by expanding the
exponential function in a power series and noting that j'é l(x) dx = 0, the probability
limit in (5.3) can be shown to be

f = o [1 .l ( J :lz(x) dx> <552_2 - a) + o(k2)].
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Hence the BAS of TV is given by

(5.4) Culk) = <‘5_22 - 5)2. k. < f () dx>2/4(e" _1-4).

0

on the other hand, similar calculations yield the BAS of the standardized U, to be

Colk) = K* < j () dx>2/8(2e _s).

0

Thus the limiting Bahadur efficiency of R, relative to U, is

(5.5) im gi—g’lg ~4 <5 _ §>Z(Ze _ S =1 =),

This value, it may be noted, is the square root of the ARE derived in (4.3).

6. The statistic R and a table of significance points

In this section, we consider the class of tests {R,(6)} for varying 6 and select the one
with maximum efficacy. This amounts to finding out the value of é for which the
expression (4.2) (or equivalently (5.4)) is a maximum. The mathematical problem
of finding the maximum does not appear simple but using a computer, it may be
checked that the maximum efficiency is attained close to a value of § = 0.7379.
For example, it may be seen that the efficiency of R,(1) relative to R,{0.7379) is
close to 86%. Thus if one were to restrict consideration to this class of tests, then it is
clearly best to take & = 0.7379. But from a practical point of view, we suggest using
a more reasonable fraction like 6 = 0.75. Since the loss of efficiency in doing this is
insigniﬁcant, we advocate the use of the statistic

(6.1) Ry = R,(0.75) = {number of Tjs 4—3—}
n

as the best among this class. From Theorem 2.1, Corollary 3.3 and equation (4.2),
we have the following result regarding the exact, asymptotic distributions of R} as
well as its efficacy.
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Corollary 6.1

The following results hold for the statistic R} defined in (6.1):

(a) Exact null distribution:

62 PRE=K) = <k> T () (oas+ 079 (4 ,>>

for k=0,1,....(n - 1),

=0 otherwise.

with the notation (x> = xif x > 0and = 0if x £ 0.

207

Table 6.1. Distribution Function of the Statistic R,’:‘ in the range of 9.90 to 1.00

n k F(k) Flk+1) | Flk+2) | Fuc+3) | Flk+ 4
—— | = |
3 1 6350 | 1.0000
4 2 .8418 1.0000
5 2 .5545 ,9392 1.0000
6 3 7583 .9780 1.0000 f
7 4 .8818 9923
§ | 4 .7030 9465 9974 \
9 5 .8334 9772 9991
0 | 5 6621 9134 9907 '
5 |8 7280 9142 9841 | 9985 |
20 11 7752 9207 .9810 9971 |
| 25 14 8112 9286 ,9801 .9960
30 17 .8399 9364 .9804 9954
[ 35 20 .8632 .9436 9813 9951
40 23 .8825 9501 9825 .9950
45 26 .8986 .9559 9838 .9950
50 28 8281 | 9121 9611 .9852 9952
55 31 8514 9237 9657 9865 19954
60 34 .8710 9336 9697 9878 9957
65 37 .8878 9421 9733 .9890 9960
70 | 39 .8293 9023 .9494 9764 9901
75 | 42 .8505 9147 9557 9791 9911
80 45 .8689 9254 9611 9816 .9920
85 48 8849 | 9346 9659 9837 19929
90 51 8988 | .9427 9700 9856 9936
95 53 .8538 9110 9497 9736 9872
100 56 .8706 9216 .9558 9768 9887
|

Fk -+ 5)

| |

.9943
.9949
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(b) Asymptotic Null Distribution:

*
() (R_" B 0.5276)/{0.3517} has a limiting  N(0, 1)
n

distribution.

(c) Pitman efficiency:

The Pitman efficacy of R¥ against the alternatives (3.1) is given by (0.1570)
(§o P*(p) dp)*.

Using the exact null distribution of R} given in (6.2), the following table of

cumulative probability function F(k) = P(R} < k) in the upper tail area has been
constructed for sample sizes n = 3(1) 10(5) 100 if the observed value k of RY is
such that F(k) (from Table 6.1) exceeds (1 ~ «), then we reject the hypothesis of
uniformity H, at that level a.
It may be remarked here that the data need not be scaled to the interval (0,1) in
order to calculate R¥. We now illustrate by means of a numerical example, the
extreme simplicity in using the statistic R, for testing uniformity. It may be remarked
here that the simplicity in using R} in our view, more than compensates for the lower
asymptotic efficiency.

Example

Consider a fire station which received 20 calls on a particular day. We want to know
if these calls are randomly distributed over the entire day or if they tend to cluster
around some particular time of the day. Suppose that the calls are received at 1 : 100,
4:30, 6:00, 6:10, 7:00, 8:00, 8:30, 8:45, 9:30, 10:05 a.m. and 1 :00,
2:10, 4:00, 5:50, 7:30,9:15, 10:00, 10: 15, 11:00, 11 : 30 p.m. Since J, =
= (0.7524/20 = 0.9 hrs. = 54 mts., R, is the number of spacings less than 54
minutes. We see easily that R¥ = 10. This R’ value of 10, when n = 20, is not signif-
icant even at « = 10% as can be seen from Table 6.1. Hence we have no reason to
reject the hypothesis that these calls are randomly distributed throughout the day.
We may remark here that for the purpose of this test the data could very well be
accumulated over several cycles (days) instead of just one.




AND Y. YOON

iven by (0.1570)

llowing table of
il area has been
alue k of R} is
he hypothesis of

interval (0, 1) in
~al example, the
nay be remarked
ites for the lower

Ve want to know
y tend to cluster
ceived at 1 : 100,
a.m. and 1 :00,
p.m. Since 9, =
gs less than 54
20, is not signif-
Ave 1o reason to
yughout the day.
uld very well be

GOODNESS-OF-FIT TEST BASED ON SPACINGS 209

References

BAHADUR, R. R. (1960). Stochastic comparison of tests. Ann. Math. Statist., 31, 276—935.

DARLING, D. A. (1953). On a class of problems related to the random division of an interval.
Ann. Math, Statist., 24, 239—253,

FELLER, W. (1966). “An introduction to the probability theory and its applications”. Vol. I,
John Wiley, New York,

FRrASER, D. A, S. (1957). “Nonparametric methods in statistics”. John Wiley, New York.

Marpia, K. V. (1972), Statistics of directional data, Academic Press.

MaULDON, J. G. (1951). Random division of an interval. Proc. Camb. Phil. Soc., 47, 331—336.

PykE, R. (1965). Spacings, J. Roy. Stat. Soc. B, 27, 395—449.

RAO, J. S. (1969). Some contributions to the analysis of circular data. Unpublished Ph. D, thesis,
Indian Statistical Institute, Calcutta.

RA0, J. S. (1972). Bahadur efficiencies cf some tests for uniformity on the circle. Ann. Math.
Statist., 43, 468—479,

RAO, J. S.- SETHURAMAN, J. (1975). Weak convergence of empirical distribution functions of
random variables subject to perturbations and scale factors. Ann. Statist., 3, 299—313,
SETHURAMAN J. - Rao, J. S. (1970). Pitman efficiencies of tests based on spacings: In Nonpara-

metric Techniques in Statistical Inference, Ed. M, L. Puri, Cambridge Univ. Press, 405—415.
SperMAN, B. (1950). A random variable related to the spacing of sample values. Ann. Math.
Statist., 21, 33951,
WiLks, S. S. (1962). “Mathematical Statistics”. John Wiley, New York.

(1) INDIANA UNIVERSITY, BLOOMINGTON, INDIANA, U.S.A.
(2) UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA, U.S.A.
(3) BLUE CROSS ET BLUE SHIELD OF TEXAS, DALLAS, TEXAS, U.S.A.

Received March 1976



